skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nowak, Mathias"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Direct imaging observations are biased toward wide-separation, massive companions that have degenerate formation histories. Although the majority of exoplanets are expected to form via core accretion, most directly imaged exoplanets have not been convincingly demonstrated to follow this formation pathway. We obtained new interferometric observations of the directly imaged giant planet AF Lep b with the VLTI/GRAVITY instrument. We present three epochs of ∼50μas relative astrometry and theK-band spectrum of the planet for the first time at a resolution ofR= 500. Using only these measurements, spanning less than 2 months, and the Hipparcos-Gaia Catalogue of Accelerations, we are able to significantly constrain the planet’s orbit; this bodes well for interferometric observations of planets discovered by Gaia DR4. Including all available measurements of the planet, we infer an effectively circular orbit (e< 0.02, 0.07, and 0.13 at 1σ, 2σ, and 3σ, respectively) in spin–orbit alignment with the host and measure a dynamical mass ofMp= 3.75MJup± 0.5MJup. Models of the spectrum of the planet show that it is metal-rich ([M/H] = 0.75 ± 0.25), with a C/O abundance encompassing the solar value. This ensemble of results shows that the planet is consistent with core accretion formation. 
    more » « less
    Free, publicly-accessible full text available December 16, 2025
  2. TheβPictoris system is the closest known stellar system with directly detected gas giant planets, an edge-on circumstellar disc, and evidence of falling sublimating bodies and transiting exocomets. The inner planet,βPictoris c, has also been indirectly detected with radial velocity (RV) measurements. The star is a knownδScuti pulsator, and the long-term stability of these pulsations opens up the possibility of indirectly detecting the gas giant planets through time delays of the pulsations due to a varying light travel time. We search for phase shifts in theδScuti pulsations consistent with the known planetsβPictoris b and c and carry out an analysis of the stellar pulsations ofβPictoris over a multi-year timescale. We used photometric data collected by the BRITE-Constellation, bRing, ASTEP, and TESS to derive a list of the strongest and most significantδScuti pulsations. We carried out an analysis with the open-source python package maelstrom to study the stability of the pulsation modes ofβPictoris in order to determine the long-term trends in the observed pulsations. We did not detect the expected signal forβPictoris b orβPictoris c. The expected time delay is 6 s forβPictoris c and 24 s forβPictoris b. With simulations, we determined that the photometric noise in all the combined data sets cannot reach the sensitivity needed to detect the expected timing drifts. An analysis of the pulsational modes ofβPictoris using maelstrom showed that the modes themselves drift on the timescale of a year, fundamentally limiting our ability to detect exoplanets aroundβPictoris via pulsation timing. 
    more » « less
  3. Abstract We resolve the multiple images of the binary-lens microlensing event ASASSN-22av using the GRAVITY instrument of the Very Large Telescope Interferometer (VLTI). The light curves show weak binary-lens perturbations, complicating the analysis, but the joint modeling with the VLTI data breaks several degeneracies, arriving at a strongly favored solution. Thanks to precise measurements of the angular Einstein radiusθE= 0.724 ± 0.002 mas and microlens parallax, we determine that the lens system consists of two M dwarfs with masses ofM1= 0.258 ± 0.008MandM2= 0.130 ± 0.007M, a projected separation ofr= 6.83 ± 0.31 au, and a distance ofDL= 2.29 ± 0.08 kpc. The successful VLTI observations of ASASSN-22av open up a new path for studying intermediate-separation (i.e., a few astronomical units) stellar-mass binaries, including those containing dark compact objects such as neutron stars and stellar-mass black holes. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025